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Abstract. The present study was done as part of a more complex project whose 
final aim is to design and implement an autonomic self-organizing system, 
mentally commanded by an user giving one of the 4 possible commands: forth, 
back, left, right. For this, we used the most studied method for designing non-
invasive brain-computer interface (BCI), namely, the electroencephalogram 
(EEG) signals acquired during mental tasks. To command, in real-time, the 
system requires very discriminative mental tasks to be used to trigger the 
corresponding device commands. The novelty of our paper consists in revealing 
the great importance the preliminary selecting process of subject-specific set of 
tasks plays within the implementation of any particular BCI application. In this 
idea, our research focuses on an extensive analysis of twelve mental tasks; the 
processing and classification approaches used by us are classical ones1. 
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1   Introduction 

The present study, as part of a more complex (on-line, EEG-based, 4-class) BCI 
project, aims to find, in a preliminary step, the paradigm which gives, for a given 
EEG processing methodology and for a specific subject, the most classifying process’ 
advantages. Practically, in this research, we exploit the already suggested idea in the 
literature, namely the requirement to design a subject-specific BCI application in 
order to obtain high system performances. The novelty of this paper consists in 
quantifying the impact the subject-specific selected set of tasks has, by itself, on the 
classification performances, and thus, indirectly, on the global BCI performance. For 
this, for each of the participants to the study we find which are the 4 mental tasks (out 
of 12 proposed candidate tasks) that lead to the most discriminative EEG patterns. 

The twelve covert mental tasks (attentively selected in this research based on the 
results reported in several psycho-physiological studies and brain imaging studies) 
consist in motor cognitive tasks as well as non-motor cognitive tasks. In general, in 
the BCI field, the choice of one or other particular set of mental tasks is done having 

                                                            
1  AR method and Bayes classifier – for selecting the subject specific tasks –, and AR method 

and MLP classifier – for comparing the results with similar reported results in the literature. 



in mind the assumed existence of different EEG-activation patterns during the 
performance of the respective selected tasks. In our case we considered some aspects 
like hemispheric asymmetries – i.e., the hemispheric asymmetries appear in 
processing positive and negative emotional experiences [1]; also, the right hemisphere 
is involved to a greater extend than the left in the performance of spatial and musical 
tasks. Verbal fluency [2], [3] and mathematical tasks primarily involve the left 
hemisphere [4]. Additionally, the motor tasks engage more asymmetrically the 
hemispheres than the non-motor tasks [4]; moreover, the two silent verbal fluency 
tasks – namely, phonemic (letter-cued) silent word generation and semantic 
(category-cued) silent word generation – were found as activating two overlapping 
but dissociable systems in the brain [5]. Not in the last, different components of 
mental calculation (e.g. tasks involving number comprehension and the calculation 
process) [6] suggest the participation of different cortical networks reflected in 
significant EEG-cortical area differences. However, the aforementioned relationships 
are not always as predicted [2], [3], [1] due probably to neuronal substrates 
specificities, differences in skill, degree of laterality, degree of vigilance [7] and, not 
in the last, due to interpretation of the task by the subjects [8]. 

Nowadays, the applications involving cognitive tasks discrimination abound in the 
different paradigms and experimental setups they use; but, most of all, the processing 
and classification techniques are those that are varying the most in all the BCI papers. 
In this context, the question of how good the methods are is quite difficult to respond 
because, often, for the same set of tasks the obtained results differ significantly from 
subject to subject. Thus, as good as these methods can be, they can not lead to 
excellent results if the selected mental tasks do not give raise fundamentally to 
different EEG pattern activations, at least in conjunction with a given subject, a given 
EEG feature extracting methodology and a given electrodes montage. From this point 
of view, the issue of finding the subject-specific most discriminative mental tasks 
appears to be at least as important as the processing methods themselves.  

In what follows, using a set of 12 different motor and non-motor cognitive tasks 
and a commonly used EEG processing and classifying methodology1, we reveal the 
significant achievable gain that can be obtained in the BCI performance only by 
selecting the most appropriate mental tasks for each investigated subject. 

2. Experimental protocol 

In this study the EEG from 4 healthy, right-handed subjects, aged between 22 and 35 
years, were recorded during 12 different mental tasks (4 motor and 8 non-motor 
imagery tasks). The subjects were instructed not to verbalize or vocalize and not to 
take any overt movement. For data acquisition, we used a MindSet 24 system. The 
subjects were seated in a noiseless room, with dim lighting. Measurements were made 
from 6 active electrodes (C3, C4, P3, P4, O1, and O2), with reference to electrically 
linked ears, A1 and A2. The data were pass-band filtered between 1.4 Hz and 35 Hz 
and sampled at 256 Hz. Signals were recorded for 20 seconds during each task, and 
each task was repeated 4 times. Successive tasks were separated by a resting period of 
30 s. To obtain the results we used raw EEG data, with no explicit artifact removal. 



The 12 mental tasks performed by the subjects were as follows: 
(1) Counting (count): the subjects were asked to imagine a counting down operation 

beginning from a random number specified before the recording. 
(2) Left fingers movement (fingerL): the subjects had to imagine opening and closing 

alternatively the left hand fingers, without doing the movements effectively. 
(3) Right fingers movement (fingerR): The subjects had to imagine opening and 

closing alternatively the right hand fingers, without any overt movement. 
(4) Left arm movement (armL): The subjects were instructed to imagine how they are 

slowly rising and falling down their left arm, without any overt movement. 
(5) Right arm movement (armR): The subjects were asked to imagine how they are 

slowly rising and falling down their right arm, without any overt movement. 
(6) Mental letter composing (letter): The subjects were instructed to mentally 

compose a letter (with a positive emotional content) to a friend or relative. 
(7) Mathematical adding (math): The subjects had to add the number specified 

before the recording to its following number; then, the result had to be added 
further to its corresponding following number and so on. At the end of the 
recording, the correctness of the subject’s result was checked. 

(8) Baseline-resting (relax): The subjects were told to relax as much as possible and 
try to think of nothing in particular. 

(9) Geometrical figure rotation (rotate): The subjects had to study a mug for 30 s 
before the recording and after that, with the mug removed, they had to visualize 
mentally the object being randomly rotated about its axes. 

(10) Letter-cued silent word generation (wordG): The subjects had to find words 
beginning with the alphabetical letter specified before the recording. 

(11) Letter-cued silent names generation (wordN): The subjects had to find as many 
as possible names beginning with the letter specified before the recording. 

(12) Reciting poetry (wordP): The subjects had to recite mentally a poetry, without 
vocalizing. 

3. Data processing and analysis 

In a first step of analysis, the subject-specific set of 4 tasks was selected using the AR 
model and the Bayes classifier; then, in order to quantify the gains a such particular 
set could provide, we employed the EEG AR model in conjunction with a MLP 
classifier, trained with the backpropagation (BP) algorithm. 

3.1. EEG AR model 

The parameters of the six-order standard parametric AR model of the EEG signal – 
adopted to obtain the feature vectors – were estimated using the Yule-Walker method. 
The AR parameters were extracted for each EEG channel and for each 0.25 s sliding 
windows (64 samples), overlapped by 0.125 s (32 samples).  

For each sliding window we obtained feature vectors of 36 elements (6 AR 
parameters/window/channel * 6 channels). The order six for the AR model was 
determined by using the autocorrelation function criterion. 



3.2. Bayes and MLP classifiers 

The Bayes classifier – a well-known probabilistic method for data classification –
finds the unknown posterior probability, P(Ci|x) (see eq. 1), for each class Ci and for a 
specific feature vector x, we want to classify. Using the Bayes theorem, the posterior 
probability is actually determined based on the prior probability, P(Ci), and on the 
likelihood function, P(x|Ci), modeled in our case by a Gaussian process, N(, ) (see 
eq. 2). In eq. 2, d is the dimensionality of the feature vector and i and i are the 
covariance matrix and, respectively, the mean vector parameters for class i. These last 
parameters were estimated on the training data set (i.e. 80% of the entire data set), 
using the formulas in eq. 3; the rest of 20% of data formed the cross-validation set. 
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In the abovementioned formulas, Ni is the number of the training samples 

belonging to class i (i  {1, 2}) and xi
j is the sample j belonging to class i. Finally, the 

Bayes classifier assigns the unknown feature vector x to class Ci if and only if: 

      2,1,max  kxCPxCP k
k

i
. (4) 

 
To select the subject-specific most discriminative 4 cognitive tasks out of the 12 

investigated in this paper, for each subject an exhaustive automatic analysis was done. 
For each subject, the all-possible four-task combinations were enumerated and the 
mean classification rates were computed for these based on the corresponding two-
class correct classification rates compactly presented in tables 2 and 3. Of these 
calculated values, for each subject we selected the 4-task combination that led to the 
best mean classification rate. The results shown in table 4 were obtained using 
additionally a threshold criterion (i.e., if for at lest one pair of tasks – out of the 6 that 
can be derived for each 4-task combination – there were correct classification rates 
below a given threshold then, the corresponding 4-task combination was disregarded). 
Different and specific two thresholds were applied for each subject. 

In a second step of analysis, the performances of the previous selected sets of tasks 
were tested using a 4-class MLP classifier, trained with the BP algorithm [9], and 
having: one hidden layer of 35 processing elements (PEs), (with tanh activation 
functions), an input layer of 36 PEs (related to the 36 components of the input feature 
vectors) and an output layer of 4 PEs, with  activation functions of sigmoid type.  



4. Results 

The Bayesian classification results, achieved for the 4 subjects, are presented in 
tables 2 and 3. These tables are compact representations of the confusion matrixes 
obtained on the CV sets, for each subject, and for all 66 possible pairs of tasks. To 
exemplify for S1, the rates presented on the first diagonal in Table 1 for the (wordP, 
rotate) pair of tasks (i.e. the true positives rates for the wordP and, respectively, the 
rotate task) can be drawn from Table 2 also, from the intersections of the line wordP 
with the column rotate and of the line rotate with the column wordP. 

Table 1. The confusion matrix on CV set, for the pair of tasks (wordP, rotate) 

                  Bayes results 
True classes 

WordP  Rotate 

WordP 90.08 % 9.92 % 
Rotate 6.72 % 93.28 % 

The first 4-task combinations (enumerated in decreasing order of their mean 
classification rates), obtained for each subject, are shown in Table 4. The finally 
selected sets of tasks, for the 4 investigated subjects, are those presented in bold type 
in Tabel 4. In Tabel 5, the performances obtained with these selected sets are 
comparatively presented, together with the performances achieved for a reference set 
of tasks, comprising in 4 out of the 5 mental tasks proposed by Keirn and Aunon [10]. 

Table 2. Classification performances for subject S1, for all 66 pairs of tasks 
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count  85.71 93.33 81.95 87.02 76.98 69.23 72.73 74.62 87.3 93.98 91.34 

fingersL 96.12  76.80 86.36 80.65 90.70 94.03 77.78 95.65 64.44 81.10 78.76 

fingersR 93.33 67.69  85.94 76.98 89.92 88.72 74.81 90.77 63.33 82.73 72.27 

armL 82.79 91.87 91.34  79.69 84.50 83.33 78.86 82.54 89.60 93.62 90.16 

armR 87.10 88.55 85.27 52.76  75.21 85.16 66.13 77.24 90.78 91.34 90.16 

letter 76.74 92.06 92.86 77.78 82.09  80.77 68.38 77.94 92.25 93.50 87.60 

math 78.26 89.26 94.26 79.26 85.04 75.20  80.16 78.83 89.78 95.24 90.08 

relax 84.55 82.95 82.33 69.70 74.05 68.12 77.52  75.59 81.15 88.98 83.72 

Rotate 65.60 92.86 95.20 63.57 71.82 62.18 57.63 64.84  82.84 93.70 93.28 

wordG 91.47 66.67 79.26 80.00 85.09 89.68 94.07 84.21 90.91  73.28 72.93 

wordN 93.44 78.90 82.76 89.47 84.39 97.73 95.35 87.50 94.53 64.75  75.61 

wordP 85.16 76.76 73.53 84.96 84.21 83.33 87.10 73.81 90.08 66.39 76.52  

 
As expected, the results in Tables 2 and 3 confirm the inter-subject variability 

regarding the particular way the subject EEG patterns are activated when performing 
the same cognitive tasks; this is primarily reflected in the various classification 
performances obtained by the investigated subjects for the same sets of tasks. Also, this 
subject-specificity is exhibited in the particular 4-task combinations we found as given 



the best classifying results for the 4 subjects as well as in the corresponding calculated 
mean classification rates which vary considerably from subject to subject. Another 
important result of our study is that for all investigated subjects, the suitable sets of 
tasks were combinations of motor with non-motor imagery tasks. 

Table 3. The classification performances for subjects S2, S3, and S4, for all 66 pairs of tasks 
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S2 

count  80.77 54.07 65.75 78.33 80 77.31 61.90 55.45 77.04 77.86 82.01 

fingersL 65.50  62.20 58.70 62.81 70.77 58.59 68.86 63.20 66.42 54.81 76.80 

fingersR 68.33 77.34  68.75 78.81 79.31 70.4 67.41 68.18 68.42 75.21 74.82 

armL 59.63 70.09 45.67  80.29 80.00 81.40 60.38 52.71 67.39 77.52 83.19 

armR 71.11 63.43 67.88 57.63  65.77 58.91 79.31 73.81 61.40 67.41 78.08 

letter 71.54 80.80 59.71 73.60 78.47  69.84 71.55 79.14 72.58 76.47 76.30 

math 73.33 70.87 61.54 75.40 78.57 67.44  58.02 75.91 53.68 64.81 74.81 

relax 79.84 85.00 75.83 80.51 83.45 77.70 73.39  83.74 77.30 65.87 76.92 

rotate 68.97 81.54 68.29 72.22 82.17 81.03 74.58 68.94  79.30 80.45 85.60 

wordG 75.83 69.42 59.57 61.54 81.56 76.34 68.91 70.18 67.63  68.75 74.40 

wordN 76.61 87.50 61.59 69.05 84.17 75.00 61.22 60.47 72.95 64.57  63.43 

wordP 81.9 79.23 68.97 73.94 80.73 70.00 74.17 74.40 82.30 70.00 55.37  
 

S3 

count  83.59 92.86 82.84 84.44 83.33 81.82 76.64 80.49 82.96 81.6 86.07 

fingersL 85.04  99.22 90.77 90.15 60.33 72.95 88.72 66.67 80.15 70.90 65.00 

fingersR 92.31 98.43  66.13 90.51 97.60 97.67 84.38 90.70 87.31 86.36 94.96 

armL 92.56 87.20 76.34  82.91 96.12 94.81 80.99 83.62 75.57 83.97 75.41 

armR 89.17 88.62 82.47 76.09  82.76 90.98 89.15 76.42 86.09 84.21 79.07 

letter 86.05 79.10 99.23 94.44 87.05  71.22 87.68 87.79 89.47 86.92 93.75 

math 75.61 79.70 99.21 96.67 96.99 43.97  80.53 62.50 87.02 81.82 86.26 

relax 80.51 90.98 89.76 73.13 84.92 85.47 84.51  80.69 78.26 73.02 83.06 

rotate 90.15 94.07 97.62 89.21 93.18 95.16 96.30 86.36  95.00 87.93 86.40 

wordG 82.50 82.35 83.47 66.13 89.29 89.34 82.26 62.39 64.44  78.05 65.32 

wordN 86.92 81.82 86.18 85.48 72.13 82.40 84.55 73.64 74.10 70.45  79.31 

wordP 91.73 86.96 94.85 86.47 92.06 92.91 94.35 91.60 73.08 89.31 89.93  
 

S4 

count  88.41 72.36 86.67 80.6 60.58 58.99 74.22 72.48 85.29 95.20 94.16 

fingersL 89.74  72.31 59.09 82.95 85.95 82.44 76.12 82.86 85.05 90.16 83.33 

fingersR 81.06 76.80  67.77 69.23 76.00 75.44 73.38 78.79 88.89 92.31 89.93 

armL 85.19 80.49 75.37  61.94 72.79 69.67 75.51 76.92 90.98 95.24 84.62 

armR 68.60 73.81 68.00 59.50  58.99 65.52 76.86 63.91 89.15 93.89 93.85 

letter 69.49 76.87 70.77 78.15 72.41  58.78 66.93 67.20 81.16 82.71 93.28 

math 77.59 90.32 83.69 75.94 74.10 66.13  73.53 74.81 89.43 87.40 95.24 

relax 86.61 82.64 81.90 81.20 78.36 70.31 77.31  87.72 72.97 82.91 94.70 

rotate 71.70 82.61 59.35 72.80 65.57 66.15 65.00 73.76  94.35 92.25 95.49 

wordG 94.96 89.86 89.92 91.73 97.62 93.16 91.67 90.48 93.89  63.24 87.69 

wordN 98.46 89.47 92.00 93.80 95.97 91.80 92.97 90.58 94.44 69.75  91.80 

wordP 95.76 80.62 93.33 92.00 92.00 92.65 92.25 92.68 96.72 87.20 90.98  



Table 4. Most discriminative 4-tasks obtained for each subject and for two different thresholds. 

Subject Threshold value  1st task 2nd task 3rd task 4th task  Mean performance 

S1 
75 

fingersR letter math wordN 89.09 
count fingersR letter wordN 88.94 
count fingersR armL wordN 88.72 

fingersL letter math wordN 88.65 
fingersR armL letter wordN 88.51 

80 count fingersR armL wordN 88.72 
 

S2 
60 

armR relax rotate wordP 79.12 
armR letter rotate wordP 77.78 
count armR relax wordP 77.33 
letter relax rotate wordP 77.3 

fingersL letter rotate wordP 77.23 

70 
count letter wordG wordP 75.66 
letter relax wordG wordP 73.97 

S3 
70 

count fingersR letter wordP 92.14 
fingersR letter rotate wordP 92 
fingersR armR math wordP 91.61 
fingersR letter relax wordP 91.27 

count fingersR letter Rotate 91.11 

83 
count fingersR letter wordP 92.14 

fingersR letter relax wordP 91.27 
 

S4 
60 

count armL wordN wordP 91.99 
count armR wordN wordP 90.94 
count rotate wordN wordP 90.79 
count fingersL wordN wordP 90.67 
count relax wordN wordP 90.67 

84 
count armL wordN wordP 91.99 
count armL wordG wordP 89.69 

 
The results presented in table 5 give us a measure of how much a preliminary 

phase of selecting the subject’s appropriate tasks can improve the classification results 
without any improvements within the algorithmic part of the developed BCI system. 

Table 5. Confusion matrixes for the selected and for the reference sets of tasks, respectively 

Selected set of tasks 

S1 S2 S3 S4 
count 78.48 armR 62.69 count 79.03 count 83.46 

fingersR 73.92 relax 59.09 fingersR 95.65 armL 74.44 
armL 73.47 rotate 82.50 letter 87.02 wordN 91.74 

wordN 82.02 wordP 75.00 wordP 85.22 wordP 92.08 
Reference set of tasks 

count 35.77 count 21.64 count 81.16 count 56.93 
letter 60.47 letter 34.55 letter 67.20 letter 40.98 
math 48.06 math 30.00 math 56.45 math 46.22 
rotate 59.06 rotate 46.53 rotate 85.12 rotate 43.85 

5. Discussions and conclusions 

The major result of this study consists in that the quality of an EEG-based, 
multitasks BCI application can be drastically improved by finding firstly the most 



discriminative cognitive tasks for a given subject and for a particular EEG feature 
extracting methodology. In this perspective, within a BCI application, in order to 
obtain better performances, one should: first find which are the best EEG features 
confining the most discriminative information that reflects the way in which the 
cognitive tasks are processed at the cortical level (i.e., hemispheric asymmetries, local 
and long-range synchronizations of brain activities, etc.), then, with the selected EEG 
features, the most subject-specific discriminative set of mental tasks (out of an 
extensive set of candidate tasks, including both, motor and non-motor imagery tasks) 
should be chosen and finally, improved versions for the already used processing 
methodology should be search for. The large variation in the classification 
performances obtained for the best-selected sets of tasks may above all suggests, for 
part of the subjects, either inappropriate investigated tasks (at least in conjunction 
with the used EEG features) or a week concentration of the subjects when performing 
the task, or even both of them. In order to exclude the second mentioned reason and 
give consistence to such preliminary analysis, in a future research we aim to reiterate 
the all steps we made in this study, but this time on similar data acquired in different 
days.  
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